Manual

Micro - Lokdecoder DCX76z

for Z and TT Scale

$0.27 \times 0.24 \times 0.07$ Inch $-6,9 \times 6,1 \times 1,7 \mathrm{~mm}(\mathrm{LxBXH})$

Cpelektronik

Grillparzergasse 5
A-2700 Wiener Neustadt
Österreich/ Austria
Tel.: 004326228208615
Fax: 0043262282086
www.tran.at e-mail: info@tran.at

Translation provided by www.SBS4DCC.com

Warning!

Due to small parts for children under 12 are not suitable. Subject to errors and change of technical progress and choice of materials reserved. Any liability for damage or consequential damage is excluded from improper use, defective devices, unauthorized intervention, overheating and overloading of technical data, operating with not provided for the model train transformers and digital devices.

1. Technical Data and Specifications DCX76z

- Enhanced and tunable load control, even slower and more evenly
 Dimensions: $6.9 \times 6.1 \times 1.7 \mathrm{~mm}+0.1 \mathrm{~mm}$ maximum tolerance

Operating voltage 7 -18 volts

- Maximum continuous current of all $=0.8$ amps
- 4 strengthened function outputs
- Lighting effects such as blinking, dimming, soft start, US-lighting, etc.
- Automatic clutch, clutch control, time control for digitial clutches
- All function outputs in groups of several fully dimmable, dimming frequency 1.2 kHz

Rull with Roco Lakmas 2 , and vaut

- Fully compatible with the NMRA DCC data format
- Full "function mapping" NMRA arrangement, ie free arrangement of the outputs
- Full "CT function mapping"
- - tul addranting Fs range display mode, reduced speed reverse
-Free speed table
- Optimized load balancing (P and I controller)
- High-frequency motor control 16 kHz or 32 kHz , for coreless motors (Faulhaber, Maxon) are ideal
-Low-frequency motor drive, variable from $30-150 \mathrm{~Hz}$
- Optional 14,28 or 128 speed steps

Digital and analog operation, the possibility, on the fly 'programming

- Hard reset and user CVs
Hard resel and user CV
- All Zimo features
- Separately adjustable braking time with HLU (also intermediate steps)

Signal sensing loco number affect (Zimo HLU, off)
-Train ID (Zimo off)
1.1 Connections of DCX76z with NEM 651
1.2

1.3 8-pin Digital Interface according to NMRA-Standard NEM 652

1.4 Pin assignment with a common rail as positive

1.4 Notes and references Assembly:
The factory setting for the DCX76z shrink tube is not installed. Secure the decoder with double sided tape, there must be no contact between metal parts such as Lokchasis or locomotive body and electronic components of the decoder may be present. Attach instead on metal parts of the locomotives with insulating tape, so we can avoid short circuits. Never wrap the decoder in insulating tape, thereby preventing the air circulation and this can lead to overheating of the decoder.

Improper use will void the warranty!

Lokdecoder DCX 762

cv	Description	Defaut	Range
1	Base Address: This is the stored address decoder, the decoder is addressed with the. This requires CV29, bit $5=0$ must be set. The addresses from the value 128 are set in CVs 17, 18. It can only be written addresses from the value 1 and read. A complete reset (= hard reset) causes the reset of all CVs to the factory default settings specified here. A reset is triggered by the single etter of CV $1=0$. A reset should be done if the decoder does not respond or unusual works, or if you have changed many settings and is now no longer cope. Except for the reset of the CV values: the speed table in CV67 to CV94 and all CVs that are deposited in the special group CV109 $=1$ are not reset. After the reset, the decoder runs back at address 3	3	1.
2	imum speed: This is the voltage applied to the motor a tspeed step 1 and starts moving with the locomotive.	2	-0-5
3	Acceleration time: indicates the time it takes for the engine to accelerate from standstill to full speed to accelerate. CV3 is at $=0$ continuous acceleration off. The engine responds immediately to changes in the hand controller.	4	-0-1
	Braking time: indicates the time it takes for the engine to decelerate from full speed to a stop. When CV4 $=0$ continuous brake off. The engine responds immediately to changes in the hand controller.	4	-
5	Maximum speed: sets the max. Speed at which the engine at max. Gear / drive controler position.	255	0. 255
6	Middle speed: This CV works in conjunction with the CV2 and CV5. There shall be a characteristic of three points. CV2 determines the starting point of the curve, ie the starting voltage. CV6 determines the center of the characteristic. CV5 sets the end point of the curve, so a maximum speed of the locomotive. A linear characteristic is achieved with CV6 $=0$ Then, the characteristic curve consists of only two points, the start point and end point CV2 CV5. With CV 6, you can create a non-linear characteristic, eg: CV2 $=2 \quad$ CV $6=50 \quad$ CV $5=200$ If we require DCC with 28 steps, then the engine speed levels in the $1-14$ per speed step just a little faster, while driving from level 15 , the speed increases then more pro gear. The engine can thus be controlled to drive gear 14 and softer. This is especially useful for shunting and for smooth starting. Applies to these 3 CV settings should be noted that between the respective CVs setting values at least 14 or more. The decoder can not otherwise assign each range on the controller has its own speed value. Example: CV $2=2 \mathrm{CV} 6=60 \mathrm{CV} 5=51$ The top speed is chosen to be very low. However, causes the value of CV $5=51$, the top speed CV $2=2$ reached the value 51 in gear 15 . The result is that you can adjust it while driving levels, but the CV $6=37$ Decoder to increase the speed of the locomotive any longer. The settings are therefore modify: CV $5=51$ Further be noted that CV always gets 2 the lower and higher values assigned to the CV 5 .	0	$\stackrel{0-}{255}$
7	Version number: The stored software version from the manufacturer, can only be read and used for information purposes. Above a certain the version (version 27 are all made by CT decoder electronics upgradeable) decoders are updatable. The can has the advantage of later detected errors are corrected in the controller.	-	Variable
8	Manufacturer ID: can be read only. Value $=117$ means that electronics manufacturers CT	117	
9	Motor control Period: This determines the frequency at which the motor is driven. For difficult cases, the low-frequency control is recommended with adjustable $30-150 \mathrm{~Hz}$. Normally, one uses the high-frequency control at 16 kHz . This setting is programmed at the factory and also ideal for coreless motors, eg The company Faulhaber and Maxon. For special cases there is the possibility of control at 32 kHz . This is set with bit 7 in CV 137th Value 13-63 adjustable from $30-150 \mathrm{~Hz}$, the frequency is calculated as $f=1953$ / Value CV9 Value of $134-191$ is 16 kHz and the frequency EMF measurement The exact formula for the continuous low-frequency control is: 1953/CV9	34	$13-$ 63 $134-$ 191
13	Analog mode: bits 0-7 defines the output A1 - A8 set that should be turned on when the decoder is direct current (DC). Behind this CV are 8 different bits. Bits are binary only, i.e. shown with value 0 or 1 . We program the CVs of the decoder to the decimal system. Da Therefore, always a conversion takes place according to the scheme. Each binary bit is a decimal value assigned. One has for each bit of the possibility the decimal value Bit value calculation for CV 13: zero or the assigned To take a decimal number. A value of zero represents off, the decimal value means ON . Bit 0 : value $0=$ off or $1=$ on Bit 0 turns the output A1, which is the light front Bit 1: value $0=$ off or $2=$ on Bit 1 switches the output A2, which is the light behind Bit 2: value $0=$ off or $4=$ on Bit 2 sets the output A3. Bit 3: value $0=$ off or $8=$ on Bit 3 sets the output A4. Bit 4: value $0=$ off or $16=$ on Bit 4 sets the output A5. Bit 5: value $0=$ off or $32=$ on Bit 5 sets the output A6. Bit 7 sets the output A8. Bit 7: value $0=$ off or $128=$ on Total max. Value $=255$ Example: In the analog driving mode to the outputs A1, A4 and A6 to be turned on. It must decimal numbers $1,8,64$ are added together from the adjacent table. The result is 73 Programmed to the value 73 in CV 13, then the above three analog outputs Driving, always on, all other outputs are always off.	0	$\stackrel{0-5}{255}$
	Extended address: address decoder is used as if it is set in CV 29 , bit $5=1$. The CV 1 is then switched off. CV29 = actual value of x plus 32 program, if address 128 and used it. The decoder and the center have the same mode (mode for long addresses) work	0	${ }_{1}^{128-}$
19	Composite address: multi-unit address different from CV1 Normally, the central one mode of operation, the "composite mode" or "double header" or "multiple unit" means. This mode gives you the address of the locomotives that you want to share control of a manual control in front of a train. E.G. the E10 with the address 10 and the E40 with the address 40 will pull together a long train. At the center you are under the double header 10 and the address 40 , an address, so then do you control these two different engines on a common speed controllers. Is not this a central potential, one uses the 19th CV It's a free unused address here that are different from all addresses in CV1, CV17 and CV18 must also be used in any other decoder, for example the address of the 88 th This address is now stored in the E10 and E40 in the 19 th in their CV If you now with a manual control, the address 88 , then one speaks exactly these two locomotives at the same time, we can go in a double header, without having to have a special operating mode of a control center. Note: In a double header to be from a hand controller, the same information is always sent to both engines. They use the information according to your decoder and programming them to. For a functional double traction, it is therefore important that the decoder of the respective locomotive contain about the same programming, such as the speed and the engines are mechanically similar in structure and similar handling characteristics to create the day. So it makes no sense as a BR 80 to combine with an E103. For more divergent handling of the engines are working against each other, which can cause mechanical damage to the engine due to overload or damage the electronics.	0	$1-$ 127

Lokdecooder DCX 762

cv	Description																								Deaturn	Range	
29	Configuration bits: important basic settings influencing various properties. Bit 0: direction: $0=$ normal $\quad 1=$ reversed Here, the direction to be changed. If after installation of the locomotive decoder according to the display on the controller in the wrong direction moves, the cables must not be soldered. This bit is a software-technical change. If you exchange with this bit, the direction the light is behind the front and not replaced. Bit 1: Speed mode: $0=14$ steps $1=28$ steps This bit sets the DCC mode determines the number of speed steps. Normally, you work with 28 speed steps. Older centers are working with only 14 steps. This bit can customize the decoder to the effect. According to the factory settings this is the only bit that is usually set to the value 1 . Bit 2: Mode: $0=$ only digital mode $1=$ analog and digital mode Our decoder can be operated with analog DC voltage. What mode of the decoder detects is set here. If the decoder is not used for analog, you should set this bit to zero. It occurs in some centers, that a brake signal is interpreted with a DC voltage as an analog operation. Then, the decoder continues at a steady pace, because he believes in the analog mode to be. Bit 3: not used Bit 4: Speed curve: $0=\mathrm{CV}$ values of $2,5,6 \quad 1=\mathrm{CV}$ values of 67-94 Here are the basic setting is made, the process by which the speed of the individual gears is fixed. A value of 0 selects the $3-$ point curve. A value of 1 selects the table of free speed curve. For details on the characteristics, read more below their respective CVs. Bit 5: Address range selection: $0=$ addr 1-127 from CV1 $\quad 1=128-10240$ from CV17 +18 This determines whether 127 addresses or more addresses, the so-called long addresses will work. Bit 6: not used Bit 7: not used																								2	0-255	
30	Error Analysis: These values can only be read out and give information about $1=$ Motor why a decoder turns off during operation, the outputs. $2=$ light $3=$ light engine and have a short circuit																								0	0-3	
$\left\|\begin{array}{l} 33-46 \\ 163-176 \end{array}\right\|$	Function mapping "function mapping" NMRA arrangement for CV 33 - CV 46, and "CT-function mapping" CV 163 - CV 176 It is the most complex way to assign specific keys on certain outputs. How can all only 7 bits are written to a CV , which implemented the maximum resulting decimal value of 255 . About a CV that is more than eight outputs (bit 0 to bit 7 are 8 ways namely) are assigned to a function key. Because this is not very functional running tracks is enough to have the CV $163-\mathrm{CV} 176$, the expanded possibilities of mapping. On the other hand, an output a plurality of function keys are assigned. Example: $\mathrm{A} 1, \mathrm{~A} 3$ and A 7 are to be switched from f 1 together. The values according to the table amount to $64,4,1$ and 69 result $\boldsymbol{\rightarrow}$ The value 69 is entered in CV 35 For details on Shunting Now, in addition to the output A14 and A16 to be off by pressing f1, So then switched from f 1 total of 5 outputs simultaneously. The values according to the table are 32,128 and 160 result $\boldsymbol{\rightarrow}$ The value 160 is entered in CV 165 In this decoder, as with most other decoders only 4 physical outputs. Accordingly, the assignment, the computational work and programming very easy. Really interesting, the table is very functional with models who have to have an additional function decoder. Its outputs can seamlessly attach to the first 4 outputs in the programming logic, and thus assign differentiated. The settings made here work in both directions. I.e. A7 is programmed to $\mathrm{f} 4(\mathrm{CV} 39=8$) and then the A 7 is turned on when the button is on f 4 manual control set to "on". The A7 will light output in both directions. If so desired, needs no further adjustments are required. If this output but only light in a certain direction, it is in CVs 154-161																								---	0-255	
CV	Key	Output	A22	A21	A20	A19	A18	A17	A16	${ }^{4} 5$	A14	${ }^{\text {A13 }}$	${ }^{\text {A } 2}$	${ }^{111}$	A10	Ая	A8	${ }^{\text {A }}$	${ }^{\text {A }}$		${ }^{\text {a4 }}$	${ }^{\text {A }}$		$\underset{\substack{\text { Liv } \\ \text { Liv }}}{\text { ction }}$			
${ }^{163}$	f0	$\frac{\text { In front }}{\text { In front }}$							128	64	32	16		4	2	1	128	64	32	16	8	4		1	1	0-25	
34	10	behind															128	64	32	16	8	4	2	1	2		
164	10	behind							128	64	32			4	2												
	${ }_{4} 1$																128	64	32	16	8	4	2	1	4		
	${ }_{1} 1$								128	64				4	2		128	64	32	16	8	4	2	1	8		
166	${ }^{\text {f }}$								128	64	32	16	8	4	2	1										0-25	
37	${ }^{\text {f3 }}$	Stinting $\begin{aligned} & \text { Shunting } \\ & \text { funcions }\end{aligned}$															128	64	32	16	8	4	2				
167	13								128				8	4	2	1										0-25	
${ }^{168} 39$	${ }^{14}$													128	64	32	16	8	4	2	1				4	0-25	
${ }^{168} 40$	$\begin{array}{r}\text { f4 } \\ \hline 15\end{array}$					128	64	32	16	8	4			128	64	32	16	8	4	2	1				8		
169	${ }^{4} 5$					128	64	32	16	8	4																
	f6 16					128	64	32	16	8	4			128	64	32	16	8	4	2	1				16	0-25	
42	17													128	64	32	16	8	4	2	1				32	0-25	
	17						64	32	16	8	4																
	$\begin{array}{r}\text { f } \\ \hline 8 \\ \hline 8 \\ \hline 18\end{array}$													128	$\underline{64}$	32	16	8								0-25	
44	+9										128			16	8	4	2	1							16	0-25	
173	${ }_{4} 19$		128	64	32	16		4	2																		
	f10 f 10										128		32	16	8		2	1							32	0-25	
46	f11										128	64		16	8		2	1							64	0-25	
	${ }_{\text {f }}{ }^{\text {f11 }}$		128	64	32	16	8	4	2	1			32	16	8		2	1							128		
	${ }^{112}$		128			16																					

Lokdecoder DCX 762

cV	Description	Defaut	Range
50	Usually influence: the degree of EMF, which is the load regulation for the motor. What is meant is that the engines under load, so at long Trains or uphill, slow down and go downhill quickly. The load control measures, strictly speaking, the Speed of the motor. If this off under heavy load, which is normal at even the sophisticated model , then engages the electronics and controls the motor current so long after, until the desired speed again is set. Mind you, this is all done internally in the decoder, this is no interference from outside, that are most Manual control is required. The adjusted value of 255 means a very fast and accurate readjustment. This is also called a hard Regulation. Cutting away the value, will necessarily increase the bandwidth of the speed, so the speed of the Motor under different loads are no longer kept as constant as 50 th in a high value of CV	255	0-255
51	P - controller: the engine capacity control influenced Here is an optimum value was found from the factory. Changes should be through their own efforts and with higher be made with lower values. Quickly it will be noticed when the engine characteristics, e.g. improve with lower values. Then should in this direction with various other lower Values continue to be experimented until they found an optimal engine settings by feel.	80	0-255
52	I - Control: affected property of the motor control Here is an optimum value was found from the factory. Changes should be through their own efforts and with higher be made with lower values. Quickly it will be noticed when the engine characteristics, e.g. improve with lower values. Then should in this direction with various other lower Values continue to be experimented until they found an optimal engine settings by feel.	40	0-255
53	Special CV: Lock and unlock the decoder If you programmed a decoder ready, it can be locked against accidental reprogramming by the value 66 in CV 53 writes. If you want to change again this CV decoder, lift the lock with a value of 77 to again. Interestingly this lock is especially multiple decoders or additional sound modules in the locomotive. After you finished with the decoder, it can be blocked and work on other modules or decoders. This is one way to electrically separate programming two decoders in one loco at CV overlays. CV programming and report back $\boldsymbol{\rightarrow} 53=66$ to lock CV programming and report back $\rightarrow 53=77$ to unlock Especially for users of the Roco Lokmaus: CVs and values higher than 99 with the Roco Lokmaus In order to program values over 99 . If CV53 $=1$ or 2 is added when writing CVs arbitrary value of 100 or 200 to the programmed value. Users with the central processing units support the full range of values do not need this detour. $\begin{aligned} & \text { CV53=1 } \\ & \text { CV53 }=2 \rightarrow 100+\text { programmed value } \\ & \hline \end{aligned}$ Examples: If the CV 50 of the value 167 should be written, must be as follows according to the series can be programmed. 1) $\mathrm{CV} 53=1$ (all subsequently programmed values are increased by 100) 2) $\mathrm{CV} 50=67$ (through the CV53 $=1$ places the value 167 is written to the CV50) 3) $\mathrm{CV} 53=0$ (reset to zero!) If the CV 137 of the value 213 should be written, must be as follows according to the series can be programmed. 1) $C V 53=1$ (all subsequently programmed values are increased by 100) 2) CV 7=37 (this is set to CV7 137, all of the following programmed values are stored in CV137) 3) CV $53=2$ (all subsequently programmed values are added together with 200) 4) CV $8=13$ (this is set CV137 to 213) 5) $\mathrm{CV} 53=0$ (reset to zero!)	0	0-255
$\begin{gathered} 54 \\ \begin{array}{l} \text { Result } \\ \text { CVF } \\ 57 \end{array} \end{gathered}$	Dimming of the function outputs: functions, eg Dim lamps or LEDs It reduces the brightness. This is done by pulse width control with a frequency of 1.2 kHz . The pulse width is set in percentage terms, ie value of 50 means half brightness according to the average hall-rail voltage of the system. The value set here is applied to all outputs, which are stored in CV 57 Note: Each lamp must be designed in principle to the rail voltage of the system. LEDs have a mandatory Series resistor can be connected. CV 54 is not suitable to apply a voltage of eg 16 volts permanenty to 8 volts to reduce. Acknowledgement pulses are always with the full rail voltage, without consideration of the CV54 submitted. Similarly, the value of this lost in a decoder reset CV. CV54 is intended to provide a normal light Lamp to dim slightly.	50	0-100
$\begin{gathered} 55 \\ \begin{array}{c} \text { Result } \\ 56.56 \\ 56.56 \end{array} \end{gathered}$	Dimming the output coupling: Coupling dim, reducing the magnetic force of the clutch, It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz . The pulse width is set in percentage terms, ie the value 50 means half the average rail voltage of the system at the coupling outputs. This function is always used when, for example an electric magnetic coupling is used which has been working with 5 volts. Would always here the full rail voltage is applied at the opening of the coupling, it can lead to overheating of the electrical coils are small and thus damage. Therefore, we reduce the voltage on these couplings, as far as possible. The value set here is applied to all outputs, which are stored in CV 58 . Note also the function of the 56 th CV Note: Each lamp must be designed in principle to the rail voltage of the system. LEDs have a mandatory Series resistor can be connected. CV 54 is not suitable to apply a voltage of eg 16 volts permanently to 8 volts to reduce. Acknowledgement pulses are always with the full rail voltage, without consideration of the CV54 submitted. Similarly, the value of this lost in a decoder reset CV. CV54 is intended to provide a normal light Lamp to dim slightly.	50	0-100
56	Switching time of the clutch output: switch for coupling digital Here is the output coupling which is stored in CV58 determines how long they should remain switched on after a keypress. A value of 0 turns it up on time, until the next keystroke of these outputs will be OFF. The time duration is measured in $\mathrm{E}=0.1 \mathrm{sec}$ example: The value 60 in CV 56 causes an activation of $60 \times 0.1 \mathrm{sec}=6$ seconds on	60	0-255

Lokdecoder DCX 762

cv	Description		${ }_{\text {Defaut }}^{\text {Defing }}$	Range
57	Dimming mask 1 for functional outputs: selection of lamps and LEDs for outputs dimmed This determines which outputs will include A1 through Ax to the function outputs for lamps and LEDs. These can be switched with function button fx that were set in CV33 et seq. The bulbs / LEDs burn with a brightness of $\mathrm{x} \%$ that was set in CV54. As in all CVs can also be written up to 8 bits (bit 0 to bit 7), so therefore, a maximum of 8 function outputs can be selected here for dimming. The selection is done according to the adjacent table, the calculated value is entered in decimal this CV 57th Due to their design, only the first 8 outputs are dimmed. Bit 0 specifies the output A1 as a function of output for dimming mask 1, which is the light front Bit 1........... A2 is the light behind Bit 2. A3 Bit 3........... . A4 Bit 4.......... A5 Bit 5. A6 Bit $6 \ldots . .$. . . . A7 Bit $7 . \ldots . .$. . . A8	Bit value calculation for CV 57 : Bit 0: value $1=\mathrm{A} 1$ set Bit 1: value $2=A 2$ set Bit 2: value $4=$ A3 set Bit 3: value $8=\mathrm{A} 4$ set Bit 5: value $32=$ A6 set Bit 6: value $64=A 7$ set Bit 7: value $128=$ A8 set Total: = 255 max. value	0	$\stackrel{0}{255}$
58	Dimming mask 2 for coupling two outputs: the outputs are to be selected, the clutch output. This determines which outputs will act as a coupling outputs A1 to Ax. These can be switched with function button fx that were set in CV33. The couplings are working with voltages in the $\mathrm{x} \%$ of rail voltage, which was set in CV55 and turn only so long as it was set in CV56. As in all CVs can also be written up to 8 bits (bit 0 to bit 7), so therefore, a maximum of 8 function outputs can be defined as the output coupler. The selection is done according to the adjacent table, the calculated value is entered in decimal this CV 58. Due to their design, only the first 8 outputs are defined as output coupler. Bit 0 specifies the output A1 as output coupler for the dimming mask 2, which is the light front Bit $1 \ldots \ldots \ldots$. . A2 is the light behind Bit 2. A3 Bit 3. A4 Bit 4........... . A5 Bit 5. A6 Bit $6 \ldots ~ A 7$ Bit $7 . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ A 8 ~$	Bit value calculation for CV 58 : Bit 0 : value $1=A 1$ set Bit 1: value $2=\mathrm{A} 2$ set Bit 2: value $4=A 3$ set Bit 3: value $8=$ A4 set Bit 4: value $16=$ A5 set Bit 5: value $32=$ A6 set Bit 6: value $64=$ A7 set Bit 7: value $128=$ A8 set Total: = 255 max. value	0	$\stackrel{0}{255}$
59	Train control: "L" speed selected for L- section, see also CV137, 96, 97,98		168	${ }_{255}^{0-1}$
60	Train control: "U" speed selected for U - section, see also CV137, 96, 97,98		84	$\stackrel{0}{0}$
61	Acceleration time: time between release and transier admission to the HLU - operation uniti in Sec. See also CV137, 96, 97,.98		1	$\stackrel{0}{05}$
64	Control reference: Handing characterisitis depending on the voltage rail		110	2-5
	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 $=1$. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum CV of 5 corresponds to the final value of the velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 $=0$, then distribute the 254 linear speeds on the 28 individual gears of the manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hinterlegbar for each of the 28 steps a definite value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited with nine steps behind.			
67	Speed table	Speed Step 1:	9	0-255
68	Speed table	Speed Step 2:	18	0-255
69	Speed table	Speed Step 3:	27	0-255
70	Speed table	Speed Step 4:	36	0-255
71	Speed table	Speed Step 5:	45	0-255
72	Speed table	Speed Step 6:	54	0-255
73	Speed table	Speed Step 7:	63	0-255
74	Speed table	Speed Step 8:	72	0-255
75	Speed table	Speed Step 9:	81	0-255
76	Speed table	Speed Step 10:	90	0-255
77	Speed table	Speed Step 11:	99	0-255
78	Speed table	Speed Step 12:	108	0-255
79	Speed table	Speed Step 13:	117	0-255
80	Speed table	Speed Step 14:	126	0-255
81	Speed table	Speed Step 15:	135	0-255
82	Speed table	Speed Step 16:	144	0-255
83	Speed table	Speed Step 17:	153	0-255
84	Speed table	Speed Step 18:	162	0-255
85	Speed table	Speed Step 19:	171	0-255
86	Speed table	Speed Step 20:	180	0-255
87	Speed table	Speed Step 21:	189	0-255
88	Speed table	Speed Step 22:	198	0-255
89	Speed table	Speed Step 23:	207	0-255
90	Speed table	Speed Step 24:	216	0-255
91	Speed table	Speed Step 25:	225	0-255
92	Speed table	Speed Step 26:	234	0-255
93	Speed table	Speed Step 27:	243	0-255
94	Speed table	Speed Step 28:	252	0-255

CV	Description		Setaut	Range
96	Train contro, "FL" chosen speed between FL (MX9 or HLU) is version 52, see CV $59,60,137$		212	0-255
97			126	0-255
98	Train control, "U-Stop" selected speed between U-Stop (MX9 or HLU) is version 52 , see CV $59,60,137$			0-255
105	User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number between 0 and 255 .			0-255
106	User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number between 0 and 255 .		0	0-255
109	Selection of CVs groups: Bit $0=0 \rightarrow$ Standard Group Bit $0=1 \rightarrow$ special group for their own applications This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values can all change according to the specifications described in broad ranges and are always stored in the default group 0 . These are the basic operating parameters. These values were changed individually, the default values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CV s. This alternative set of CV values, e.g. be set for a club operation $($ CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1), all CV values of the current group will be reset to factory setting, not the CV109, and CV67-CV94, however deleted.		0	0.1
111	Intensity of Acknowledgement pulses (ACK): improved programmability, $128=50 \%$ of max. Acknowledgement pulses (Engine dependent) value of 255 = generally well tolerated			0-255
114	The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz . The pulse width is set in percentage terms, ie the value 50 means half the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV154 to 161.		0	0.
115	Pause duration of effects: defines the time (duration) between two effects		0	
116	Shunting: $\ddagger 3$ button is factory-set (CV37), it is unmappable see CV35-42. the effects. Shunting gears are the only active when bit 0 to bit 2 of these are set CV116. Bit $0=1 \rightarrow$ CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shunting (f3 is key "On"), whose values are set to 0 . The engine then converts each setting of the manual control immediately. Bit $1=1 \rightarrow$ The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit $2=1 \rightarrow$ reverse the max. Speed of only 65%. This setting is independent of the key $\ddagger 3$ whether the shunting is now switched on or not, just by setting this bit. This feature has for shunting locomotives, which are well done, very successful. For sound decoder driving AND: new bit of software version in CV116 is 40 and on some hardware Bit $3=1 \rightarrow$ brakes with 4-1 active diode Bit $4=1 \rightarrow$ brakes with diode directional NOT Bit $5=0 \rightarrow$ is not used, must always be 0 . (Braking mode also allows for slow speed) Bit $6=1 \rightarrow$ means that the shunting effect as a command button, that is that the train control (Braking diode and / or HLU) is NOT working! (equivalent to the MAN button) Bit $7=0 \rightarrow$ is not used, must always be 0 .		0	0-255
	Number of stop down the function key: Modern rail vehicles have head beam and low beam. The decoder can simulate this function electronically. In CV 117 is set which button the remote light switch is. There can be only one key can be defined. Written is a decimal value from $1-12$			
117				
118	Mask for preview function: This defines to which output is dimmed with the button is CV117. Several, up to 8 outputs can be defined. Bit 0 switches the output A 1 on, which is the light front Bit 1 switches the output A2 on, which is the light behind Bit 2 switches the output A3 on. Bit 3 switches the output A4 on. Bit 4 switches the output A5 on. Bit 5 switches the output A6 on. Bit 6 switches the output A7 on. Bit 7 switches the output A8 on.	Bit value calculation for CV-118: Bit 0 : value $0=$ off or value $1=$ on Bit 1: value $0=$ off or value $2=$ on Bit 2: value $0=$ off or value $4=$ on Bit 3 : value $0=$ off or value $8=$ on Bit 4: value $0=$ off or value $16=$ on Bit 5 : value $0=$ off or value $32=$ on Bit 6 : value $0=$ off or value $64=$ on Bit 7 : value $0=$ off or value $128=$ on Total max. Value $=255$	0	0.
119	Dimmer for dimming: dimming for low beam, $50=50 \%$ of full brightness, $100=100 \% \boldsymbol{\rightarrow}$ no stopping It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz . The pulse width is set in percentage terms, ie value of 50 means half the average voltage of the rail system for dimmer. The value set here is applied to all outputs, which are stored in CV 118 th		0	0
120	Cycle duration of effecis: defines how long to take an effect. Thus the speed of a e effect is determined.		0	0.255
137	Bit 0 : feature selection $0=1=8$ functions 14 functions This is about the MAN bit. The old ZIMO MAN bit controller makes the necessary. If this bit is set incorrectly, then work up the functions from non-f5.	Calculation for CV 137: Bit 0:0 or 1 Bit 1:0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: 0 or 32 Bit 6: 0 or 64 Bit 7: 0 or 128 Total: up to 255	0	$\stackrel{0}{0} \mathrm{O}$

