Manual

Micro - Lokdecoder DCX76z

for Z and TT Scale

0.27 x 0.24 x 0.07 Inch - 6,9 x 6,1 x 1,7 mm (LxBxH)

Grillparzergasse 5 A-2700 Wiener Neustadt Österreich/ Austria Tel.: 0043 2622 82086 15 Fax: 0043 2622 82086

www.tran.at e-mail: info@tran.at

Translation provided by www.SBS4DCC.com

Warning!

Due to small parts for children under 12 are not suitable. Subject to errors and change of technical progress and choice of materials reserved. Any liability for damage or consequential damage is excluded from improper use, defective devices, unauthorized intervention, overheating and overloading of technical data, operating with not provided for the model train transformers and digital devices.

Lokdecoder DCX 76:

1. Technical Data and Specifications DCX76z

- · Enhanced and tunable load control, even slower and more evenly
- Dimensions: 6.9 x 6.1 x 1.7 mm (+ 0.1 mm maximum tolerance)
- Operating voltage 7-18 volts
- Maximum continuous current motor = 0.8 amps
- Maximum continuous current of all outputs = 250 mA
- · 4 strengthened function outputs
- · Lighting effects such as blinking, dimming, soft start, US-lighting, etc.
- · Automatic clutch, clutch control, time control for digital clutches
- All function outputs in groups of several fully dimmable, dimming frequency 1.2 kHz
- Reliable overload protection for motor and function outputs
- Fully programmable with Roco Lokmaus 2, and values and CVs over 99
- . Fully compatible with the NMRA DCC data format
- Full "function mapping" NMRA arrangement, ie free arrangement of the outputs
- Full "CT function mapping"
- full address range 1-10240
- shunting F3 display mode, reduced speed reverse
- Free speed table
- Optimized load balancing (P and I controller)
- High-frequency motor control 16 kHz or 32 kHz, for coreless motors (Faulhaber, Maxon) are ideal
- . Low-frequency motor drive, variable from 30 150 Hz
- Optional 14, 28 or 128 speed steps
- · Digital and analog operation, the possibility, on the fly 'programming
- · Hard reset and user CVs
- 2 sets of CV can be chosen (for own account or for third-party applications)
- All Zimo feature
- . Separately adjustable braking time with HLU (also intermediate steps)
- . Signal sensing loco number affect (Zimo HLU, off)
- Train ID (Zimo off)
- Braking by asymmetric signal (4:1 ratio diodes)

1.1 Connections of DCX76z with NEM 651

1.2

1.3 8-pin Digital Interface according to NMRA-Standard NEM 652

#	Steck	cer	#
1	Orange	Red	8
2	Yellow	Blue	7
3	N/C	White	6
4	Black	Gray	5

1.4 Pin assignment with a common rail as positive

Connection for anti-parallel connected LEDs

Notes and references

Assembly:

The factory setting for the DCX76z shrink tube is not installed. Secure the decoder with double sided tape, there must be no contact between metal parts such as Lokchasis or locomotive body and electronic components of the decoder may be present. Attach instead on metal parts of the locomotives with insulating tape, so we can avoid short circuits. Never wrap the decoder in insulating tape, thereby preventing the air circulation and this can lead to overheating of the decoder.

Improper use will void the warranty!

2. Configuration Variables (CV's)

cv	Description		Default Setting	Range
	Base Address: This is the stored address decoder, the decoder is addressed with the. This requires CV29, bit 5 = 128 are set in CVs 17, 18. It can only be written addresses from the value 1 and read.	0 must be set. The addresses from the value		
1	A complete reset (= hard reset) causes the reset of all CVs to the factory default settings specified here. A reset is reset should be done if the decoder does not respond or unusual works, or if you have changed many settings an the CV values: the speed table in CV67 to CV94 and all CVs that are deposited in the special group CV109 = 1 at back at address 3	d is now no longer cope. Except for the reset of	3	1 - 127
2	Minimum speed: This is the voltage applied to the motor at speed step 1 and starts moving with the locomotive.		2	0 - 255
3	Acceleration time: indicates the time it takes for the engine to accelerate from standstill to full speed to accelerate engine responds immediately to changes in the hand controller.	. CV3 is at = 0 continuous acceleration off. The	4	0 - 255
4	Braking time: indicates the time it takes for the engine to decelerate from full speed to a stop. When CV4 = 0 cont immediately to changes in the hand controller.	inuous brake off. The engine responds	4	0 - 255
5	Maximum speed: sets the max. Speed at which the engine at max. Gear / drive controller position.		255	0 - 255
	Middle speed: This CV works in conjunction with the CV2 and CV5. There shall be a characteristic of three points is the starting voltage. CV6 determines the center of the characteristic. CV5 sets the end point of the curve, so a result of the curve of the characteristic cV5 sets the end point of the curve, so a result of the curve of the characteristic cV5 sets the end point of the curve, so a result of the curve of the characteristic cV5 sets the end point of the curve, so a result of the curve of the characteristic cV5 sets the end point of the curve.			
	A linear characteristic is achieved with CV6 = 0 Then, the characteristic curve consists of only two points, the star	t point and end point CV2 CV5.		
	With CV 6, you can create a non-linear characteristic, eg: CV 2 = 2 CV 6 = 50 CV 5 = 200			
6	If we require DCC with 28 steps, then the engine speed levels in the 1 - 14 per speed step just a little faster, while more pro gear. The engine can thus be controlled to drive gear 14 and softer. This is especially useful for shunting		0	0 -
	Applies to these 3 CV settings should be noted that between the respective CVs setting values at least 14 or mor range on the controller has its own speed value. Example: CV 2 = 2 CV 6 = 60CV 5 = 51	e. The decoder can not otherwise assign each		255
	The top speed is chosen to be very low. However, causes the value of CV $5 = 51$, the top speed CV $2 = 2$ reache can adjust it while driving levels, but the CV $6 = 37$ Decoder to increase the speed of the locomotive any longer. To			
	Further be noted that CV always gets 2 the lower and higher values assigned to the CV 5.			
7	Version number: The stored software version from the manufacturer, can only be read and used for information p 27 are all made by CT decoder electronics upgradeable) decoders are updatable. The can has the advantage of controller.		-	Variable
8	Manufacturer ID: can be read only. Value = 117 means that electronics manufacturers CT	construction recommended with adjustable	117	117
	Motor control Period: This determines the frequency at which the motor is driven. For difficult cases, the low-frequ 30-150 Hz. Normally, one uses the high-frequency control at 16 kHz. This settling is programmed at the factory ar company Faulhaber and Maxon. For special cases there is the possibility of control at 32 kHz. This is set with bit	d also ideal for coreless motors, eg The	134	13 - 63
9	Value 13-63 adjustable from 30 - 150 Hz, the frequency is calculated as f = 1953 / Value CV9 Value of 134-191 is 16 kHz and the frequency EMF measurement			134- 191
	The exact formula for the continuous low-frequency control is: 1953/CV9			
13	Analog mode: bits 0-7 defines the output A1 - A8 set that should be turned on when the decoder is direct current (DC), Behind this CV are 8 different bits. Bits are binary only, i.e. shown with value 0 or 1. We program the CVs of the decoder to the decimal system. Da Therefore, always a conversion takes place according to the scheme. Each binary bit is a decimal value assigned. One has for each bit of the possibility the decimal value zero or the assigned To take a decimal number. A value of zero represents off, the decimal value means ON. Bit 0 turns the output A1, which is the light front Bit 1 switches the output A2, which is the light behind Bit 2 sets the output A3. Bit 3 sets the output A4. Bit 4 sets the output A6. Bit 6 sets the output A6. Bit 6 sets the output A7.	Bit value calculation for CV 13: Bit 0: value 0 = off or 1 = on Bit 1: value 0 = off or 2 = on Bit 2: value 0 = off or 4 = on Bit 3: value 0 = off or 8 = on Bit 4: value 0 = off or 6 = on Bit 5: value 0 = off or 32 = on Bit 6: value 0 = off or 64 = on Bit 7: value 0 = off or 64 = on	0	0 - 255
	Bit 7 sets the output A8.	Total max. Value = 255		
	Example: In the analog driving mode to the outputs A1, A4 and A6 to be turned on. It must decimal numbers 1, 8, 64 are added together from the adjacent table. The result is 73 Programmed to the value 73 in CV 13, then the above three analog outputs Driving, always on, all other outputs are always off.			
17	Extended address: address decoder is used as if it is set in CV 29, bit 5 = 1. The CV 1 is then switched off.		0	128 –
18	CV29 = actual value of x plus 32 program, if address 128 and used it. The decoder and the center have the same mode (mode for long addresses) work.		J	10240
	Composite address: multi-unit address different from CV1 Normally, the central one mode of operation, the "composite mode" or "double header" or "multiple unit" means. I locomotives that you want to share control of a manual control in front of a train. E.G. the E10 with the address 10 together a long train. At the center you are under the double header 10 and the address 40, an address, so then common speed controllers. Is not this a central potential, one uses the 19th CV It's a free unused address here that are different from all address.	and the E40 with the address 40 will pull to you control these two different engines on a esses in CV1, CV17 and CV18 must also be		
19	used in any other decoder, for example the address of the 88th This address is now stored in the E10 and E40 in control, the address 88, then one speaks exactly these two locomotives at the same time, we can go in a double I operating mode of a control center. Note: In a double header to be from a hand controller, the same information is always sent to both engines. They use the programming them to. For a functional double traction, it is therefore important that the decoder of the respective programming, such as the speed and the engines are mechanically similar in structure and similar handling charasense as a RR 80 to combine with an E103. For more divergent handling of the engines are working against each the engine due to overload or damage the electronics.	neader, without having to have a special information according to your decoder and locomotive contain about the same cleristics to create the day. So it makes no	0	1 – 127

Lokdecoder DCX 76z

CV										- 1	Desc	cripti	ion												Default Setting	Range
	Bit 0: direction Here, the direction the wrong dispit, the direction Bit 1: Speed	on: 0 = normal rection to be correction moves tion the light is mode: 0 = 14	l 1 = hanged s, the c s behin steps	revers d. If af ables d the	sed ter ins must front a	tallation tallat	on of the solder	he loc red. T aced.	comoti This bi	ive de it is a	ecode softw	are-te	echnica	al char	nge. If	you e	xchan	ge with	this	Bit 0: Bit 1: Bit 2: Bit 3: Bit 4:	0 or 1 0 or 2 0 or 4 0 or 8 0 or 1	1 2 4 3	V 29:		Columb	
29	are working only bit that Bit 2: Mode: Our decoder used for and as an analog Bit 3: not use Bit 4: Speed Here are the point curve, respective C Bit 5: Addres	curve: 0 = C\ basic setting A value of 1 s Vs. ss range selectines whether 1	teps. To the value is made elects in terms. O	This bit value of the anathis bit e decorate the tall and tall	t can of to can of to ze oder of to ze oble of	og and C volta ro. It o continu 1 = C ess by free sp	digital age. W accurs les at a CV valu which peed o	Il mod /hat m in sor a stea lues of the s curve.	le node come cer ady particular of 67-9 speed For d	of the enters ace, but of the letails	decor that a ecause indiv	der de a brak se he b ridual (se chai	etects in the sign of the sign	is set in all is in the sis fixed ristics,	here. If nterpre he anal	the dited w	lecode ith a E ode to	er is not occurred by the occurrence of the occurrence of the occurrence occu	t age	Bit 6: Bit 7:	0 or 6	128			2	0 - 255
30	1 = Motor wi 2 = light	is: These value hy a decoder to ine and have	urns of	ff duri	ng ope					tion a	bout														0	0 - 3
33-46 163-176	It is the most decimal value functional rule are assigned. A1, A3 and a The values a Now, in additionable to the switter the values a In this decodinteresting, the programmin The settings.	A7 are to be s according to the outched from f1 thaccording to the der, as with much table is verig logic, and the made here wat A7 will light or	vito assurt a CNs enough witched the table put A1- total of the table post other by functions assort in b	sign sp. / that d from a amo 4 and 5 outp a re : cite of the cite	oecific is more than the second of the secon	keys or than he CV gether. 64, 4, o be o imultar 8 and only 4 nodels tiated.	on cern eight 163 - 1 and If by p neousl 160 re 1 physi who h	rtain o t output CV 1 d 69 re pressir ly. esult sical or have t	esult The trutputs outputs ff, the trutputs outputs outputs outputs	The state of the s	w can bit 7 pander he val	all onlare 8 of diposs Jue 69 60 is egly, the onal fu	ally 7 bi ways sibilitie is entered entered e assigunction	its are nameles of materials attered in CV ignmenting deco	writter by) are a napping in CV 3 V 165 nt, the oder. Its	n to a assign g. On 335	CV, when the other control of	thich im a funct her har hal work in seam	plemotion keep of the control of the	progra di attaci	For ammin	this is urality detail see C	s not v of fun s on S V 116 y easy t 4 out	very cition keys Shunting A. Really touts in the control set		0 - 255
CV 33	Key	Output	A22																							
	f 0	In front		A21	A20	A19	A18	A17		A15	A14	A13	A12	A11	A10	A9	A8 128	A7	A6 32	A5 Shunting Functions 16	A4 8	A3	A2 Lih	A1 Liv	1	0 – 255
163 34	f 0 f 0	In front behind		A21	A20	A19	A18	A17	128	64	32	16	8	4	2	A9				Shunting Functions			Lih	Liv	1 2	0 - 255 0 - 255
34 164 35	f 0 f 0 f 0 f 1	In front		A21	A20	A19	A18	A17		64	32		8	4	2		128	64	32	Shunting Functions 16	8	4	Lih 2	Liv	1 2 4	0 - 255 0 - 255 0 - 255 0 - 255
34 164 35	f 0 f 0 f 0 f 1	In front behind		A21	A20	A19	A18	A17	128	64	32	16	8	4	2		128	64	32	Shunting Functions 16	8	4	Lih 2 2	Liv		0 - 255 0 - 255 0 - 255
34 164 35 165 36	f 0 f 0 f 0 f 1 f 1 f 2 f 2	In front behind behind		A21	A20	A19	A18	A17	128	64	32	16	8	4	2	1	128 128 128	64 64 64 64	32 32 32 32	Shunting Functions 16 16 16	8 8 8	4 4 4	2 2 2	1 1 1	4 8	0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255
34 164 35 165 36 166	f0 f0 f0 f1 f1 f2 f2 f2	In front behind		A21	A20	A19	A18	A17	128 128 128 128	64 64 64	32 32 32 32	16 16 16	8 8	4 4 4	2 2 2 2	1	128 128 128	64 64 64	32 32 32	Shunting Functions 16 16	8 8	4 4 <u>4</u>	2 2 2	Liv	4	0 - 255 0 - 255
34 164 35 165 36 166 37	f0 f0 f0 f1 f1 f1 f2 f2 f2	In front behind behind Shunting		A21	A20	A19	A18	A17	128 128 128	64 64 64	32 32 32	16 16	8 8	4 4 4 4	2 2 2 2 2 2	1 1 1 1	128 128 128 128	64 64 64 64 64	32 32 32 32 32	Shunting Functions 16 16 16 16 16	8 8 8 8	4 4 4	2 2 2	1 1 1	8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39	f0 f0 f0 f1 f1 f2 f2 f3 f3	In front behind behind Shunting		A21	A20	128	A18	A17	128 128 128 128	64 64 64	32 32 32 32	16 16 16	8 8	4 4 4 4 128	2 2 2 2 64	1 1 1 1 32	128 128 128 128 128	64 64 64 64 64	32 32 32 32 32 32	Shunting Functions 16 16 16 16 2	8 8 8 8	4 4 4	2 2 2	1 1 1	4 8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168	f0 f0 f0 f1 f1 f1 f2 f2 f3 f3 f3	In front behind behind Shunting		A21	A20	128	64	32	128 128 128 128 128	64 64 64 64 8	32 32 32 32 32	16 16 16 16	8 8	4 4 4 4	2 2 2 2 2 2	1 1 1 1	128 128 128 128	64 64 64 64 64	32 32 32 32 32	Shunting Functions 16 16 16 16 16	8 8 8 8	4 4 4	2 2 2	1 1 1	8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 40	f0 f0 f0 f1 f1 f1 f2 f2 f3 f3 f3 f4 f4 f5 f5	In front behind behind Shunting		A21	A20	128	64 64	32 32	128 128 128 128 128 128 16 16	64 64 64 64 8 8	32 32 32 32 32 4	16 16 16 16 2	8 8	4 4 4 4 128	2 2 2 2 64	1 1 1 1 32	128 128 128 128 128	64 64 64 64 64	32 32 32 32 32 32	Shunting Functions 16 16 16 16 2	8 8 8 8	4 4 4	2 2 2	1 1 1	4 8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39	f0 f0 f0 f1 f1 f2 f2 f3 f3 f3 f4 f4 f5 f5 f6	In front behind behind Shunting		A21	A20	128	64 64 64	32 32 32	128 128 128 128 128	64 64 64 64 8	32 32 32 32 32	16 16 16 16 16 2 2	8 8	4 4 4 4 128	2 2 2 2 64	1 1 1 1 32	128 128 128 128 128	64 64 64 64 64	32 32 32 32 32 32	Shunting Functions 16 16 16 16 2	8 8 8 8	4 4 4	2 2 2	1 1 1	4 8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 169 41 170 42	f0 f0 f0 f1 f1 f2 f2 f3 f3 f4 f4 f5 f6 f6 f7	In front behind behind Shunting		A21	A20	128	64 64 64	32 32	128 128 128 128 128 128 16 16	64 64 64 64 8 8	32 32 32 32 32 4	16 16 16 16 2	8 8	4 4 4 4 128 128 128	2 2 2 2 2 64 64 64	1 1 1 1 32 32 32 32	128 128 128 128 128 128 16 16	64 64 64 64 64 8 8 8	32 32 32 32 32 4 4	Shunting Functions 16 16 16 16 2 2 2 2 2	8 8 8 8 1 1 1	4 4 4	2 2 2	1 1 1	4 8 16 4 8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 169 41 170 42 171	f 0 f 0 f 0 f 1 f 1 f 2 f 2 f 3 f 3 f 4 f 4 f 4 f 5 f 5 f 6 f 6 f 7	In front behind behind Shunting		A21	A20	128 128 128	64 64 64	32 32 32	128 128 128 128 128 16 16	64 64 64 64 8 8	32 32 32 32 32 4 4	16 16 16 16 16 2 2	8 8 8 1 1 1 1	4 4 4 4 128 128	2 2 2 2 64 64 64	1 1 1 32 32 32	128 128 128 128 128 128 16 16	64 64 64 64 64 8 8	32 32 32 32 32 4 4	Shunting Functions 16 16 16 16 2 2 2 2	8 8 8 8 1 1	4 4 4	2 2 2	1 1 1	4 8 16 4 8	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 170 41 170 43 171 43 44	f0 f0 f0 f1 f1 f1 f2 f2 f3 f3 f3 f4 f4 f5 f5 f6 f6 f7 f7 f8 f8	In front behind behind Shunting				128 128 128 128 128	64 64 64 64 64	32 32 32 32 32 32	128 128 128 128 128 128 16 16 16 16	64 64 64 64 8 8 8	32 32 32 32 32 4 4	16 16 16 16 2 2	8 8 8 1 1 1 1	4 4 4 4 128 128 128	2 2 2 2 2 64 64 64	1 1 1 1 32 32 32 32	128 128 128 128 128 128 16 16	64 64 64 64 64 8 8 8	32 32 32 32 32 4 4	Shunting Functions 16 16 16 16 2 2 2 2 2	8 8 8 8 1 1 1	4 4 4	2 2 2	1 1 1	4 8 16 4 8 16	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 170 41 171 43 172	f0 f0 f1 f1 f1 f2 f3 f3 f4 f4 f5 f6 f6 f6 f7 f7 f7 f8 f8	In front behind behind Shunting	128		32	128 128 128	64 64 64 64	32 32 32 32 32	128 128 128 128 128 128 16 16 16	64 64 64 64 8 8 8	32 32 32 32 32 4 4 4	16 16 16 16 2 2 2	8 8 8 8 1 1 1	4 4 4 4 4 128 128 128 128	2 2 2 2 2 64 64 64 64	1 1 1 1 32 32 32 32 32	128 128 128 128 128 128 16 16 16	64 64 64 64 64 8 8 8 8	32 32 32 32 32 4 4	Shunting Functions 16 16 16 16 2 2 2 2 2	8 8 8 8 1 1 1	4 4 4	2 2 2	1 1 1	4 8 16 8 16 32 64	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 169 41 170 42 171 43 172 44 173 45	f0 f0 f0 f1 f1 f2 f2 f3 f3 f4 f4 f4 f5 f6 f6 f7 f7 f7 f7 f8 f8 f9 f9 f1 f1	In front behind behind Shunting	128			128 128 128 128 128	64 64 64 64 64	32 32 32 32 32 32	128 128 128 128 128 128 16 16 16 16	64 64 64 64 8 8 8	32 32 32 32 32 4 4 4 4 4 128	16 16 16 16 16 2 2 2 2 64 64	8 8 8 8 8 1 1 1 1 1 1 32 32	4 4 4 4 128 128 128 128 128	2 2 2 2 2 2 64 64 64 64 64 8 8	1 1 1 1 1 32 32 32 32 32 4	128 128 128 128 128 128 16 16 16 16 2	64 64 64 64 64 8 8 8 8 8	32 32 32 32 32 4 4	Shunting Functions 16 16 16 16 2 2 2 2 2	8 8 8 8 1 1 1	4 4 4	2 2 2	1 1 1	4 8 16 8 16 32 64	0 - 255 0 - 255
34 164 35 165 36 166 37 167 39 168 40 170 42 171 43 172 44 173	f0 f0 f0 f1 f1 f2 f2 f3 f3 f4 f4 f4 f5 f6 f6 f7 f7 f7 f7 f8 f8 f9 f9 f1 f1	In front behind behind Shunting		64	32	128 128 128 128 128 128	64 64 64 64 64 8	32 32 32 32 32 32	128 128 128 128 128 128 16 16 16 16 16	64 64 64 64 8 8 8	32 32 32 32 32 4 4 4 4 4	16 16 16 16 2 2 2 2 2	8 8 8 8 8 1 1 1 1 1 1 32	4 4 4 4 4 128 128 128 128 128	2 2 2 2 2 2 64 64 64 64 64 8	1 1 1 1 32 32 32 32 32 4	128 128 128 128 128 128 16 16 16 16	64 64 64 64 64 8 8 8 8 8	32 32 32 32 32 4 4	Shunting Functions 16 16 16 16 2 2 2 2 2	8 8 8 8 1 1 1	4 4 4	2 2 2	1 1 1	4 8 16 8 16 32 64	0 - 255 0 - 255

CV	Description	Default Setting	Range
50	Usually influence: the degree of EMF, which is the load regulation for the motor. What is meant is that the engines under load, so at long Trains or uphill, slow down and go downhill quickly. The load control measures, strictly speaking, the Speed of the motor. If this off under heavy load, which is normal at even the sophisticated model , then engages the electronics and controls the motor current so long after, until the desired speed again is set. Mind you, this is all done internally in the decoder, this is no interference from outside, that are most Manual control is required. The adjusted value of 255 means a very fast and accurate readjustment. This is also called a hard Regulation. Cutting away the value, will necessarily increase the bandwidth of the speed, so the speed of the Motor under different loads are no longer kept as constant as 50th in a high value of CV	255	0 - 255
51	P - controller: the engine capacity control influenced Here is an optimum value was found from the factory. Changes should be through their own efforts and with higher be made with lower values. Quickly it will be noticed when the engine characteristics, e.g., improve with lower values. Then should in this direction with various other lower Values continue to be experimented until they found an optimal engine settings by feel.	80	0 – 255
52	I - Control: affected property of the motor control Here is an optimum value was found from the factory. Changes should be through their own efforts and with higher be made with lower values. Quickly it will be noticed when the engine characteristics, e.g. improve with lower values. Then should in this direction with various other lower Values continue to be experimented until they found an optimal engine settings by feel.	40	0 – 255
53	Special CV: Lock and unlock the decoder If you programmed a decoder ready, it can be blocked against accidental reprogramming by the value 66 in CV 53 writes. If you want to change again this CVs decoder, lift the lock with a value of 77 to again. Interestingly this lock is especially multiple decoders or additional sound modules in the locomotive. After you finished with the decoder, it can be blocked and work on other modules or decoders. This is one way to electrically separate programming two decoders in one loco at CV overlays. CV programming and report back • 53 = 66 to lock CV programming and report back • 53 = 77 to unlock Especially for users of the Roco Lokmaus: CVs and values higher than 99 with the Roco Lokmaus In order to program values over 99. If CV53 = 1 or 2 is added when writing CVs arbitrary value of 100 or 200 to the programmed value. Users with the central processing units support the full range of values do not need this detour. CV53 = 1 • 100 + programmed value CV53 = 2 • 200 + programmed value Examples: If the CV 50 of the value 167 should be written, must be as follows according to the series can be programmed. 1) CV 53 = 1 (all subsequently programmed values are increased by 100) 2) CV 50 = 67 (through the CV53 = 1 places the value 167 is written to the CV50) 3) CV 53 = 0 (reset to zero!) If the CV 137 of the value 213 should be written, must be as follows according to the series can be programmed. 1) CV 53 = 1 (all subsequently programmed values are increased by 100) 2) CV 7 = 37 (this is set to CV7 137, all of the following programmed values are stored in CV137) 3) CV 53 = 2 (all subsequently programmed values are added together with 200) 4) CV 53 = 10 (reset to zero!)	0	0 – 255
54 Result CV: 57	Dimming of the function outputs: functions, eg Dim lamps or LEDs It reduces the brightness. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in percentage terms, ie value of 50 means half brightness according to the average half-rail voltage of the system. The value set here is applied to all outputs, which are stored in CV 57 Note: Each lamp must be designed in principle to the rail voltage of the system. LEDs have a mandatory Series resistor can be connected. CV 54 is not suitable to apply a voltage of eg 16 volts permanently to 8 volts to reduce. Acknowledgement pulses are always with the full rail voltage, without consideration of the CV54 submitted. Similarly, the value of this lost in a decoder reset CV. CV54 is intended to provide a normal light Lamp to dim slightly.	50	0 – 100
55 Result CV: 56,58	Dimming the output coupling: Coupling dim, reducing the magnetic force of the clutch, It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in percentage terms, ie the value 50 means half the average rail voltage of the system at the coupling outputs. This function is always used when, for example an electric magnetic coupling is used which has been working with 5 volts. Would always here the full rail voltage is applied at the opening of the coupling, it can lead to overheating of the electrical coits are small and thus damage. Therefore, we reduce the voltage on these couplings, as far as possible. The value set here is applied to all outputs, which are stored in CV 58. Note also the function of the 56th CV Note: Each lamp must be designed in principle to the rail voltage of the system. LEDs have a mandatory Series resistor can be connected. CV 54 is not suitable to apply a voltage of eg 16 volts permanently to 8 volts to reduce. Acknowledgement pulses are always with the full rail voltage, without consideration of the CV54 submitted. Smilarly, the value of this lost in a decoder reset CV. CV54 is intended to provide a normal light Lamp to dim slightly.	50	0 - 100
56	Switching time of the clutch output: switch for coupling digital Here is the output coupling which is stored in CV58 determines how long they should remain switched on after a keypress. A value of 0 turns it up on time, until the next keystroke of these outputs will be OFF. The time duration is measured in E = 0.1 sec example: The value 60 in CV 56 causes an activation of 60 x 0.1 sec = 6 seconds on	60	0 - 255

Lokdecoder DCX 76z

CV	Description		Default Setting	Range
	Dimming mask 1 for functional outputs: selection of lamps and LEDs for outputs dimmed		County	
57	This determines which outputs will include A1 through Ax to the function outputs for lamps and LEDs. These can be switched with function button fx that were set in CV33 et seq. The bulbs / LEDs burn with a brightness of x5 that was set in CV54. As in all CV5 can also be written up to 8 bits (bit 0 to bit 7), so therefore, a maximum of 8 function outputs can be selected here for drimming. The selection is done according to the adjacent table, the calculated value is entered in decimal this CV 57th Due to their design, only the first 8 outputs are dimmed. Bit 0 specifies the output A1 as a function of output for dimming mask 1, which is the light front Bit 1	Bit value calculation for CV 57: Bit 0: value 1 = A1 set Bit 1: value 2 = A2 set Bit 2: value 4 = A3 set Bit 2: value 4 = A3 set Bit 2: value 8 = A4 set Bit 4: value 16 = A5 set Bit 4: value 16 = A5 set Bit 6: value 24 = A6 set Bit 7: value 24 = A8 set Total: = 255 max. value	0	0 - 255
58	Dimming mask 2 for coupling two outputs: the outputs are to be selected, the clutch output. This determines which outputs will act as a coupling outputs A1 to Ax. These can be switched with function button fx that were set in CV33. The couplings are working with votages in the x% of rail votage, which was set in CV55 and turn only so long as it was set in CV56. As in all CVs can also be written up to 8 bits (fill to bit 7), so therefore, a maximum of 8 function outputs can be defined as the output coupler. The selection is done according to the adjacent table, the calculated value is entered in decimal this CV 58. Due to their design, only the first 8 outputs are defined as output coupler. Bit 0 specifies the output A1 as output coupler for the dimming mask 2, which is the light front	Bit value calculation for CV 58: Bit 0: value 1 = A1 set Bit 1: value 2 = A2 set Bit 2: value 4 = A3 set Bit 2: value 6 = A4 set Bit 4: value 16 = A5 set Bit 4: value 16 = A5 set	0	0 - 255
	Bit 1	Bit 6: value 64 = A7 set Bit 7: value 128 = A8 set Total: = 255 max. value		
59	Train control: "L" speed selected for L - section, see also CV137, 96, 97.98		168	0 - 255
60	Train control: "U" speed selected for U - section, see also CV137, 96, 97.98		84	0 - 255
61	Acceleration time: time between release and transfer admission to the HLU - operation unit in Sec. See also CV137, 96,	97.98	1	0 - 255
64	Control of control Handling share desirables decomplished as Alexandria			
64	Control reference: Handling characteristics depending on the voltage rail		110	0 - 255
64	Control reference: Handling characteristics depending on the voltage rail Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 225 linear sy amanual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited	peeds on the 28 individual gears of the terlegbar for each of the 28 steps a definite	110	
67	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy amaual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin	peeds on the 28 individual gears of the terlegbar for each of the 28 steps a definite	9	
	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited	peeds on the 28 individual gears of the terlegbar for each of the 28 steps a definite with nine steps behind.		255
67 68 69	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allowin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table Speed table Speed table	seeds on the 28 individual gears of the terlegbar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3:	9 18 27	255 0 - 255 0 - 255 0 - 255
67 68 69 70	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value (c) to the control of	seeds on the 28 individual gears of the terlegbar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4:	9 18 27 36	255 0 - 255 0 - 255 0 - 255
67 68 69	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allowin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table Speed table Speed table	seeds on the 28 individual gears of the terlegbar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3:	9 18 27	255 0 - 255 0 - 255 0 - 255
67 68 69 70 71 72 73	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum velocity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited Speed table Speed table Speed table Speed table	seeds on the 28 individual gears of the terteghar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 5: Speed Step 6: Speed Step 7:	9 18 27 36 45 54 63	0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255
67 68 69 70 71 72 73 74	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value clotry curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear symanual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the tertegate for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 5: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 8:	9 18 27 36 45 54 63 72	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum valuotity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hir value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the terelegaer for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 8: Speed Step 9:	9 18 27 36 45 54 63 72 81	0 - 255 0 - 255
67 68 69 70 71 72 73 74	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value object of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 Individual gears of the terteipar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 8: Speed Step 9: Speed Step 9: Speed Step 9: Speed Step 10:	9 18 27 36 45 54 63 72	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum valuotity curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hir value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the terelegaer for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 8: Speed Step 9:	9 18 27 36 45 54 63 72 81 90	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value (c) curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the tertegbar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 5: Speed Step 6: Speed Step 7: Speed Step 9: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 13:	9 18 27 36 45 54 63 72 81 90 99 108	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 79	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum valuority curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows him value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 Individual gears of the tentelepar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 8: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 12: Speed Step 12: Speed Step 13: Speed Step 14:	9 18 27 36 45 54 63 72 81 90 99 108 117 126	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 77 80 80	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value object, or under the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value, treely assignable, the maximum value, treely assignable, the pay a certain characteristic in the decoder, works with the following table, which allows him value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	speed on the 28 individual gears of the terteighar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 13: Speed Step 13: Speed Step 14: Speed Step 15:	9 18 27 36 45 54 63 72 81 90 108 117 126	0 - 255 0 - 25
67 68 69 70 71 72 73 74 75 76 77 78 79	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum valuority curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows him value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 Individual gears of the tentelepar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 8: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 12: Speed Step 12: Speed Step 13: Speed Step 14:	9 18 27 36 45 54 63 72 81 90 99 108 117 126	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 77 78 80 81 82	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value (c) curve. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposted. Speed table	seeds on the 28 individual gears of the terteipat for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 3: Speed Step 5: Speed Step 5: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 8: Speed Step 9: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 12: Speed Step 13: Speed Step 14: Speed Step 15: Speed Step 16: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 18: Speed Step 19: Speed Step 16: Speed Step 16: Speed Step 16:	9 18 27 36 45 54 63 72 81 90 99 108 117 126 135	0 - 255 0 - 25
67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value object ourse. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows him value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	speed on the 28 individual gears of the terteighar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 11: Speed Step 14: Speed Step 15: Speed Step 15: Speed Step 17: Speed Step 16: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 17: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 17: Speed Step 18: Speed Step 19:	9 18 27 36 45 54 63 72 81 90 108 117 126 135 144 153 162 171	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value (control of the decoder) works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value, treely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited speed table. Speed table	seeds on the 28 individual gears of the testlegate for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 7: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 15: Speed Step 16: Speed Step 17: Speed Step 16: Speed Step 17: Speed Step 18: Speed Step 19:	9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value object ourse. Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows him value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	speed on the 28 individual gears of the terteighar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 11: Speed Step 14: Speed Step 15: Speed Step 15: Speed Step 17: Speed Step 16: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 17: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 17: Speed Step 18: Speed Step 19:	9 18 27 36 45 54 63 72 81 90 108 117 126 135 144 153 162 171	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 84 85 86 87	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value (curve). Leaving the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the tentelopar for seach of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 6: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 8: Speed Step 9: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 12: Speed Step 15: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 18: Speed Step 18: Speed Step 18: Speed Step 16: Speed Step 16: Speed Step 17: Speed Step 18: Speed Step 18: Speed Step 18: Speed Step 19: Speed Step 20: Speed Step 21:	9 18 27 36 45 54 81 90 108 117 126 135 144 153 162 171 180	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 99	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value object, or unreading the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the terteighar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 7: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 13: Speed Step 14: Speed Step 15: Speed Step 16: Speed Step 17: Speed Step 18: Speed Step 18: Speed Step 19: Speed Step 19: Speed Step 16: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 18: Speed Step 19: Speed Step 19: Speed Step 19: Speed Step 20: Speed Step 22: Speed Step 23: Speed Step 23: Speed Step 24:	9 18 27 36 45 54 81 90 99 108 117 126 135 144 153 162 171 180 189 198 207 216	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 99	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value, treely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited Speed table	seeds on the 28 individual gears of the testlepar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 6: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 9: Speed Step 9: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 12: Speed Step 16: Speed Step 17: Speed Step 18: Speed Step 19: Speed Step 19: Speed Step 16: Speed Step 17: Speed Step 18: Speed Step 19: Speed Step 19: Speed Step 19: Speed Step 20: Speed Step 20: Speed Step 21: Speed Step 22: Speed Step 23: Speed Step 24: Speed Step 25:	9 18 27 36 45 54 81 90 108 117 126 135 144 153 162 171 180 189 198 207 216 225	0 - 255 0 - 255
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 99	Speed table: The table below, CV 67 to CV 94 is used when bit 4 is set in CV29 = 1. Internally, the decoder works with 255 speed steps. The minimum rate of CV 2 represents the initial value, the maximum value object, or unreading the middle speed of CV6 before viewing this outside, so CV6 = 0, then distribute the 254 linear sy manual control. Who wants to pay a certain characteristic in the decoder, works with the following table, which allows hin value, freely assignable, fully independent, and individually programmed. 28 steps from the factory have been deposited. Speed table	seeds on the 28 individual gears of the terteighar for each of the 28 steps a definite with nine steps behind. Speed Step 1: Speed Step 2: Speed Step 3: Speed Step 4: Speed Step 5: Speed Step 6: Speed Step 7: Speed Step 7: Speed Step 7: Speed Step 10: Speed Step 10: Speed Step 11: Speed Step 11: Speed Step 12: Speed Step 13: Speed Step 14: Speed Step 15: Speed Step 16: Speed Step 17: Speed Step 18: Speed Step 18: Speed Step 19: Speed Step 19: Speed Step 16: Speed Step 16: Speed Step 17: Speed Step 17: Speed Step 18: Speed Step 19: Speed Step 19: Speed Step 19: Speed Step 20: Speed Step 22: Speed Step 23: Speed Step 23: Speed Step 24:	9 18 27 36 45 54 81 90 99 108 117 126 135 144 153 162 171 180 189 198 207 216	0 - 255 0 - 255

Train control, "FL" chosen speed between FL (MX9 or HLU) is version 52, see CV 59, 60, 137 Train control, "U-" chosen speed between LU (MX9 or HLU) is version 52, see CV 59, 60, 137 Train control, "U-" Stop" selected speed between U-Stop (MX9 or HLU) is version 52, see CV 59, 60, 137 User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number betw User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number betw Selection of CVs groups: Bit 0 = 0 → Standard Group Bit 0 = 1 → special group for their own applications This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values described in broad ranges and are always stored in the default group 0. These are the basic operating parameters. These value default values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CVs. This alternative set of CV (CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1) as reset to factory setting, not the CV109, and CV67-CV94, however deleted. Intensity of Acknowledgement pulses (ACK): improved programmability, 128 = 50% of max. Acknowledgement pulses (Engin well tolerated It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in perce the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV15-Pause duration of effects: defines the time (duration) between two effects Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) ar	ange accou ues were c values, e.ç all CV value e depende	d 255. rding to the specifications changed individually, the g. be set for a club operation es of the current group will be ent) value of 255 = generally	212 126 42 0 0 0 255 0	0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255 0 - 255
Train control, "U-Stop" selected speed between U-Stop (MX9 or HLU) is version 52, see CV 59, 60, 137 User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number betw User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number betw Selection of CVs groups: Bit 0 = 0 → Standard Group Bit 0 = 1 → special group for their own applications This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values can all che described in broad ranges and are always stored in the default group 0. These are the basic operating parameters. These vall default values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CVs. This alternative set of CV (CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1), a reset to factory setting, not the CV109, and CV67-CV94, however deleted. Intensity of Acknowledgement pulses (ACK): improved programmability, 128 = 50% of max. Acknowledgement pulses (Engin well tolerated The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1,2 kHz. The pulse width is set in perce the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV15/Pause duration of effects: defines the time (duration) between two effects Shurting: 13 button is factory-set (CV37), it is ummappable see CV35-42. the effects. Shurting gears are the only active when bit 2 of these are set CV	ange accou ues were c values, e.ç all CV value e depende	id 255. rding to the specifications changed individually, the label set for a club operation as of the current group will be set) value of 255 = generally label set. Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 18 Bit 5: always 0 Bit 6: or 64	0 0 0 255 0	0 - 255 0 - 255 0 - 255 0 - 100 0 - 255
User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number betw User-CV: This CV has on the properties of the decoder no influence. This CV can be written into and read out. It can for example here the date of purchase will be deposited. It can be written into and read out. It can for example here the date of purchase will be deposited. It can be written each decimal number betw Selection of CVs groups: Bit 0 = 0 → Standard Group Bit 0 = 1 → special group for their own applications This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values can all che described in broad ranges and are always stored in the default group 0. These are the basic operating parameters. These value default values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CVs. This alternative set of CV·(CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1), a reset to factory setting, not the CV109, and CV67-CV94, however deleted. Intensity of Acknowledgement pulses (ACK): improved programmability, 128 = 50% of max. Acknowledgement pulses (Engin well tolerated The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in perce the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV15. Pause duration of effects: defines the time (duration) between two effects Shunting; 13 button is factory-set (CV37), it is unmappable see CV35-42, the effects. Shunting (3 is key "On"), whose values are set to 0. The e	ange accou ues were c values, e.ç all CV value e depende	id 255. rding to the specifications changed individually, the label set for a club operation as of the current group will be set) value of 255 = generally label set. Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 18 Bit 5: always 0 Bit 6: or 64	0 0 0 255 0	0 - 255 0 - 255 0 - 10 0 - 255
It can for example here the date of purchase will be deposited. It can be written each decimal number betw User-CV: This CV has on the properties of the decoder no influence. This CV can be written leach decimal number betw Selection of CVs groups: Bit 0 = 0 → Standard Group Bit 0 = 1 → special group for their own applications This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values can all chescribed in broad ranges and are always stored in the default group 0. These are the basic operating parameters. These value default values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CVs. This alternative set of CV (CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1), a reset to factory setting, not the CV109, and CV67-CV94, however deleted. Intensity of Acknowledgement pulses (ACK): improved programmability, 128 = 50% of max. Acknowledgement pulses (Engine Well tolerated The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in perce the average rail voltage of the system at the outputs. The values set here is applied to all effects, which are deposited in CV152 Pause duration of effects: defines the time (duration) between two effects Shurting: 13 button is factory-set (CV37), it is unmappable see CV35-42, the effects. Shurting gears are the only active when bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, is with active shurting (f3 is key "On"), whose values are set to 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → Them ax. Speed is halved forward and backward. This allows the engine driven mo	ange accou ues were c values, e.ç all CV value e depende	id 255. rding to the specifications changed individually, the label set for a club operation as of the current group will be set) value of 255 = generally label set. Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 18 Bit 5: always 0 Bit 6: or 64	0 0 2555 0 0	0 - 255 0 - 1 0 - 255 0 - 100
It can for example here the date of purchase will be deposited. It can be written each decimal number betw Selection of CVs groups: Bit 0 = 0 → Standard Group Bit 0 = 1 → special group for their own applications This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values can all che described in broad ranges and are always stored in the default group 0. These are the basic operating parameters. These valuefault values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CVs. This alternative set of CV (CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1), a reset to factory setting, not the CV109, and CV67-CV94, however deleted. Intensity of Acknowledgement pulses (ACK): improved programmability, 128 = 50% of max. Acknowledgement pulses (Engin well tolerated) The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in percet the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV15/Pause duration of effects: defines the time (duration) between two effects Shurting; 13 button is factory-set (CV37), it is unmappable see CV35-42. the effects. Shurting gears are the only active when bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shurting (13 is key 'O'n'), whose values are set to 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit 3 = 1 → reverse the max. Speed of only 65%. This setting is independent of the key 'G'n'), whose	ange accourses were convalues, e.ç. all CV values dependented entage term 4 to 161.	rding to the specifications changed individually, the g. be set for a club operation es of the current group will be ent) value of 255 = generally ent) ent) ent) ent) ent) ent) ent) ent)	0 255	0 - 1 0 - 255 0 - 100 0 - 255
This decoder has stored the factory CVs listed in this table in its memory with the appropriate values. These values can all che described in broad ranges and are always stored in the default group 0. These are the basic operating parameters. These value default values are reset group 0 with a hard reset (for details, see CV 1) to the factory settings in the left column. In addition, to be deposited again completely different values in a special group 1 for all these CVs. This alternative set of CV: (CV109 = 1). Home on your own system is run with the default values (CV109 = 0). With a hard reset (for details, see CV 1), a reset to factory setting, not the CV109, and CV67-CV94, however deleted. The direction of factors with the cv109, and Cv67-CV94, however deleted. The direction of the cv109 of the cv109, and Cv67-CV94, however deleted. The direction of the cv109 of the	values, e.g. values, e.g. values, e.g. values, e.g. values e depende entage term 4 to 161.	changed individually, the graph control in the current group will be set for a club operation as of the current group will be set) value of 255 = generally set. Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 6: on 64	255	0 - 255 0 - 100 0 - 255
well tolerated The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in percet here average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV154 Pause duration of effects: defines the time (duration) between two effects Shunting: 13 button is factory-set (CV37), it is unmappable see CV35-42. the effects. Shunting gears are the only active when bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shunting (f3 is key "On"), whose values are set to 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit 2 = 1 → reverse the max. Speed of only 65%. This setting is independent of the key 13 whether the shunting is now switched on or not, just by setting this bit. This feature has for shunting locomotives, which are well done, very successful. For sound decoder driving AND: new bit of software version in CV116 is 40 and on some hardware Bit 3 = 1 → brakes with 4-1 active diode Bit 4 = 1 → brakes with 4-1 active diode Bit 4 = 1 → brakes with diode directional NOT Bit 5 = 0 → is not used, must always be 0. (Braking mode also allows for slow speed) Bit 4 = 1 → mears that the shunting effect as a command button, that is that the train control (Braking diode and of or HLU) is NOT working! (equivalent to the MAN button)	entage tem 4 to 161.	Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: always 0 Bit 6: 0 or 64	0	0 - 100
The dimming effects: lower brightness value for light effects, see CV154 to 161 It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in percet the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV15* Pause duration of effects: defines the time (duration) between two effects Shunting; 13 button is factory-set (CV37), it is unmappable see CV35-42; the effects. Shunting gears are the only active when bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shunting (13 is key "On"), whose values are set 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit 2 = 1 → reverse the max. Speed of only 65%. This setting is independent of the key for shunting locomotives, which are well done, very successful. For sound decoder driving AND: new bit of software version in CV116 is 40 and on some hardware Bit 3 = 1 → brakes with 4-1 active diode Bit 4 = 1 → brakes with diode directional NOT Bit 5 = 0 → is not used, must always be 0. (Braking mode also allows for slow speed) Bit 4 = 1 → means that the shunting effect as a command button, that is that the vain control (Braking diode and of or HLU) is NOT working! (equivalent to the MAN button)	4 to 161.	Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: always 0 Bit 6: 0 or 64	0	0 - 255
the average rail voltage of the system at the outputs. The value set here is applied to all effects, which are deposited in CV152 Pause duration of effects: defines the time (duration) between two effects Shunting: 13 button is factory-set (CV37), it is unmappable see CV35-42, the effects. Shunting gears are the only active when bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shunting (13 is key "On"), whose values are set to 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit 2 = 1 → reverse the max. Speed of only 65%. This setting is independent of the key favelength of the setting of the setting is independent of the key for shunting is now switched on or not, just by setting this bit. This feature has for shunting locomotives, which are well done, very successful. For sound decoder driving AND: new bit of software version in CV116 is 40 and on some hardware Bit 3 = 1 → brakes with close directional NOT Bit 5 = 0 → is not used, must always be 0. (Braking mode also allows for slow speed) Bit 6 = 1 → mears that the shunting effect as a command button, that is that the train control (Braking diode and of refit.bl) is NOT working! (equivalent to the MAN button)	4 to 161.	Bit value calculation for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: always 0 Bit 6: 0 or 64	0	0 - 255
Shunting: 13 button is factory-set (CV37), it is unmappable see CV35-42. the effects. Shunting gears are the only active when bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shunting (f3 is key "On"), whose values are set to 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit 2 = 1 → reverse the max. Speed of only 65%. This setting is independent of the key 13 whether the shunting is now switched on or not, just by setting this bit. This feature has for shunting locomotives, which are well done, very successful. For sound decoder driving AND: new bit of software version in CV116 is 40 and on some hardware Bit 3 = 1 → brakes with 4-1 active diode Bit 4 = 1 → brakes with diode directional NOT Bit 5 = 0 → is not used, must always be 0. (Braking mode also allows for slow speed) Bit 6 = 1 → mears that the shunting effect as a command button, that is that the train control (Braking diode and of refILU) is NOT working! (equivalent to the MAN button)	bit 0 to	for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: always 0 Bit 6: 0 or 64		
bit 2 of these are set CV116. Bit 0 = 1 → CV3 (acceleration) and CV4 (deceleration) are turned off, ie with active shunting (f3 is key 'O'n'), whose values are set to 0. The engine then converts each setting of the manual control immediately. Bit 1 = 1 → The max. Speed is halved forward and backward. This allows the engine driven more sensitive be. Bit 2 = 1 → reverse the max. Speed of only 65%. This setting is independent of the key if 3 whether the shunting is now switched on or not, just by setting this bit. This feature has for shunting locomotives, which are well done, very successful. For sound decoder driving AND: new bit of software version in CV116 is 40 and on some hardware Bit 3 = 1 → brakes with 4-1 active diode Bit 4 = 1 → brakes with diode directional NOT Bit 5 = 0 → is not used, must always be 0. (Braking mode also allows for slow speed) Bit 6 = 1 → means that the shunting effect as a command button, that is that the varian control (Braking diode and of refILU) is NOT working! (equivalent to the MAN button)	bit 0 to	for CV 116: Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: always 0 Bit 6: 0 or 64	0	0 - 255
Number of stop down the function key: Modern rail vehicles have head beam and low beam. The decoder can simulate this function electronically. In CV 117 is set w There can be only one key can be defined. Written is a decimal value from 1 - 12 Value 1 → Button F1 Value 7 → Button F 7 Value 8 → Button F 8 Value 9 → Button F 9 Value 4 → Button F4 Value 11 → Button F10 Value 13 → Button F10 Value 13 → Button F10 Value 14 → Button F10	hich buttor	n the remote light switch is.	0	1- 12
Mask for preview function: This defines to which output is dimmed with the button is CV117. Several, up to 8 outputs can be defined. Bit 0 switches the output A1 on, which is the light front Bit 1 switches the output A2 on, which is the light behind Bit 2 switches the output A3 on. Bit 3 switches the output A4 on. Bit 4 switches the output A5 on. Bit 5 switches the output A6 on. Bit 5 switches the output A6 on. Bit 6 switches the output A7 on. Bit 7 switches the output A8 on. Bit 7 switches the output A8 on.	Bit 0: vali Bit 1: vali Bit 2: vali Bit 3: vali Bit 4: vali Bit 5: vali Bit 6: vali Bit 7: vali	ue 0 = off or value 1 = on ue 0 = off or value 2 = on ue 0 = off or value 4 = on ue 0 = off or value 8 = on ue 0 = off or value 16 = on ue 0 = off or value 32 = on ue 0 = off or value 64 = on ue 0 = off or value 128 = on	0	0 - 255
Dimmer for dimming: dimming for low beam, 50 = 50% of full brightness, 100 = 100% → no stopping It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in perc			0	0 - 100
the average voltage of the rail system for dimmer. The value set here is applied to all outputs, which are stored in CV 118th				
Cycle duration of effects: defines how long to take an effect. Thus the speed of an effect is determined. Special CV: several special settings			U	0 - 255
Bit 0: feature selection 0 = 1 = 8 functions 14 functions This is about the MAN bit. The old ZIMO MAN bit controller makes the necessary. If this bit is set incorrectly, then work up the functions from non-f5. Bit 1: Zimo - Loco number 0 = off 1 = on (ACK / off) Bit 2: not used Bit 3: not used Bit 4: Zimo - signal controlled speed influence HLU Bit 5: not used Bit 6: Evaluate the LCB pulses via 14 0 = no evaluation 1 = evaluation 114 = f1 press		Bit 0: 0 or 1 Bit 1: 0 or 2 Bit 2: 0 or 4 Bit 3: 0 or 8 Bit 4: 0 or 16 Bit 5: 0 or 32 Bit 6: 0 or 64 Bit 7: 0 or 128	0	0 - 255
	Value 2 → Button F2 Value 3 → Button F3 Value 4 → Button F4 Value 7 → Button F4 Value 7 → Button F4 Value 8 → Button F9 Value 8 → Button F9 Value 7 → Button F10 Value 6 → Button F6 Value 10 → Button F10 Value 11 → Button F11 Value 6 → Button F6 Value 12 → Button F11 Value 12 → Button F11 Bit 1 switches the output A1 on, which is the light front Bit 1 switches the output A2 on, which is the light behind Bit 2 switches the output A3 on. Bit 3 switches the output A3 on. Bit 3 switches the output A5 on. Bit 5 switches the output A5 on. Bit 5 switches the output A5 on. Bit 6 switches the output A6 on. Bit 7 switches the output A6 on. Bit 8 switches the output A6 on. Bit 7 switches the output A6 on. Bit 8 switches the output A6 on. Bit 9 switches the output A6 on. Bit 9 switches the output A6 on. Bit 1 sw	Value 2 → Button F2 Value 3 → Button F3 Value 4 → Button F4 Value 7 → Button F1 Value 6 → Button F4 Value 7 → Button F1 Value 6 → Button F5 Value 7 → Button F5 Value 8 → Button F5 Value 8 → Button F5 Value 7 → Button F1 Value 8 → Button F6 Value 12 → Button F10 Value 8 → Button F6 Value 12 → Button F10 Wask for preview function: This defines to which output is dimmed with the button is CV117. Several, up to 8 outputs can Bit 0 switches the output A1 on, which is the light front Bit 1 switches the output A2 on, which is the light behind Bit 2 switches the output A3 on. Bit 3 switches the output A5 on. Bit 4 switches the output A5 on. Bit 5 switches the output A5 on. Bit 6 switches the output A7 on. Bit 7 switches the output A7 on. Bit 7 switches the output A7 on. Bit 7 switches the output A8 on. Dimmer for dimming: dimming for low beam, 50 = 50% of full brightness, 100 = 100% → no stopping It reduces the average voltage. This is done by pulse width control with a frequency of 1.2 kHz. The pulse width is set in percentage ter the average voltage of the rall system for dimmer. The value set here is applied to all outputs, which are stored in CV 118th Cycle duration of effects: defines how long to take an effect. Thus the speed of an effect is determined. Special CV: several special settings This is about the MAN bit. The old ZIMO MAN bit controller makes the necessary. If this bit is set incorrectly, then work up the functions from non-15. Bit 2: mort used Bit 3: zino tused Bit 3: zino tused Bit 3: zino tused Bit 4: Zimo - signal controlled speed influence HLU Bit 5: not used Bit 6: Evaluate the LGB pulses via f4 0 = no evaluation 1 = evaluat	Value 2 → Button F2 Value 8 → Button F 9 Value 3 → Button F3 Value 9 → Button F19 Value 5 → Button F4 Value 10 → Button F10 Value 5 → Button F6 Value 6 → Button F6 Value 12 → Button F10 Value 6 → Button F6 Value 12 → Button F11 Value 6 → Button F6 Value 12 → Button F12 Mask for preview function: This defines to which output is dimmed with the button is CV117. Several, up to 8 outputs can be defined. Bit 0 switches the output A1 on, which is the light front Bit 1 switches the output A2 on, which is the light behind Bit 2 value 0 or dir or value 2 = on Bit 1 switches the output A3 on. Bit 3 switches the output A3 on. Bit 3 switches the output A4 on. Bit 6 switches the output A5 on. Bit 5 switches the output A5 on. Bit 6 switches the output A5 on. Bit 7 value 0 = off or value 1 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 2 = on Bit 5 value 0 = off or value 4 = on Bit 5 value 0 = off or value 2 = on Bit 6 value 0 = off or value 4 = on Bit 5 value 0 = off or value 2 = on Bit 6 value 0 = off or value 4 = on Bit 5 value 0 = off or value 2 = on Bit 6 value 0 = off or value 4 = on Bit 6 value 0 = off or value 1 = of	Value 1 → Button F1 Value 7 → Button F 7 Value 8 → Button F 8 Value 2 → Button F2 Value 8 → Button F 8 Value 3 → Button F3 Value 9 → Button F 8 Value 4 → Button F4 Value 11 → Button F10 Value 6 → Button F6 Value 11 → Button F10 Value 11 → Button F11 Value 11 → Button F12 Value 11 → Button F12 Value 12 → Button F2 Value 12 → Button F12 Bit 0: value 0 = off or value 1 = on Bit 0: value 0 = off or value 1 = on Bit 0: value 0 = off or value 1 = on Bit 1: value 0 = off or value 1 = on Bit 1: value 0 = off or value 1 = on Bit 2: value 0 = off or value 2 = on Bit 1: value 0 = off or value 4 = on Bit 1: value 0 = off or value 1 = on Bit 2: value 0 = off or value 3 = on Bit 2: value 0 = off or value 4 = on Bit 3: value 0 = off or value 4 = on Bit 3: value 0 = off or value 4 = on Bit 3: value 0 = off or value 8 = on Bit 3: value 0 = off or value 8 = on Bit 3: value 0 = off or value 8 = on Bit 3: value 0 = off or value 8 = on Bit 4: value 0 = off or value 8 = on Bit 5: value 0 = off or value 8 = on Bit 5: value 0 = off or value 64 = on Bit 6: value 0 = off or value 22 = on Bit 6: value 0 = off or value 23 = on Bit 7: value 0 = off or value 64 = on Bit 7: value 0 = off or value 23 = on Bit 7: value 0 = off or value 23 = on Bit 7: value 0 = off or value 24 = on Bit 7: value 0 = off or value 24 = on Bit 7: value 0 = off or value 24 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 24 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 24 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7: value 0 = off or value 25 = on Bit 7:

Lokdecoder DCX 76z

C۷	Description	Default Setting	Range
138	Braking time (HLU) Deceleration at the HLU section (MX 9 or HLU module) that is an accurate signal possible before stopping	3	0 - 255
139	Short-circuit threshold 1: immediate shutdown in case of overload of the auxiliary functions	15	0 - 255
140	Short-circuit threshold 2: fast shutdown in case of overload of the auxiliary functions	12	0 - 255
141	Short-circuit threshold 3: slow shutdown in case of overload of the additional functions	10	0 - 255
142	Short-circuit threshold 1: immediate shutdown in case of overload of the motor	90	0 - 255
143	Short-circuit threshold 2: fast shutdown of the motor overload	80	0 - 255
144	Short-circuit threshold 3: slow shutdown in case of overload of the motor	70	0 - 255
147	Discharge of the coupling: speed when pushing back (locomotive runs in the opposite direction)	20	0 - 126
148	Departing from cars: speed when driving away from cars, locomotive moves in the direction of current, 126 = max. speed taking into account the time set in CV 3	50	0 - 126
149	Discharge time: the time for pushing back, that is, unit = 0.1 sec the value 10 = 1 second	10	0 – 126
150	Away time: the time for driving away, that is, unit = 0.1 sec The value 30 = 3 seconds	30	0 - 126
130	Selecting the button for the automatic uncouple: 0 = off	50	0 - 120
151	Value 1 → Button F1	0	0 – 12
	Uncoupling mask forward: the selection function to be used,		
152	Value 4 = F2	8	0 - 255
	Value 16 = F4 Value 128 = F7 Uncoupling mask backwards: the selection function to be used,		
153	Value 4 = F2	8	0 - 255
	Value 0 = r3		
154 - 161 Result	Value 1 → Flashing Value 2 → Flashing Alternating Value 3 → Single Pulse Strobe Value 4 → Double Strobe Value 5 → Flashing Headlight Value 6 → Ditch-Light left Value 7 → Ditch-Light (gift) (Brightness between maximum and PVM value of CV114) Value 7 → Ditch-Light (gift) (Brightness between maximum and PVM value of CV114) Value 8 → Rotary beacon Value 9 → Gyralfire Value 10 → Mars Light Value 11 → Soft-Start (slow gimmer of functions) Effect-Nr. + value 64 → the output Ax is active in forward direction Effect-Nr. + value 128 → the output Ax is active only in reverse (z.B. 10 + 128 = 138 → Mars light visit only in reverse)		0 – 139
CV: 114, 115, 120,	Effect.Nr. + value 0 → the output Ax is active in both directions (z.B. 4 + 0 = 4 → Double Strobe in both directions) At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called *function mapping* in CVs 33 ff To award the associated outputs and key from a certain direction CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the extyou have assigned to the output of a particular key (CV33 ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: Xemple: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lift, the output turns on when the key A7 f4 and only lights in forward motion.		
CV: 114, 115, 120,	At cartain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33 ff To award the associated outputs and key from a certain direction CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the exit - you have assigned to the output of a particular key (CV33 ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lit, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping"		0. 122
CV: 114, 115, 120,	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33f II or award the associated outputs and key from a certain direction CV33ff function, which is the other main task of this group CV. 161 set to shine also in which direction the ext - you have assigned to the output of a particular key (CV33ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filled. For forward motion but the value 64 is stored in CV 160. Well lift, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 see text, for example where Lv is to be written to flash must in CV 154 value of 1	0	0 – 139
154 155	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33 ff. To award the associated outputs and key from a certain direction CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the exit - you have assigned to the output of a particular key (CV33 ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lit, the output turns on when the key A7 f4 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 → see text, for example where Lv is to be written to flash must in CV 155 value of 1 Effects of light rear: A2 → see text, for example if Lh is to be written to flash must in CV 155 value of 1	0	0 – 139
154 155 156	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33 ff. To award the associated outputs and key from a certain direction CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the exit - you have assigned to the output of a particular key (CV33 ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 150. Well lift, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 -> see text, for example where Lv is to be written to flash must in CV 155 value of 1 Effects of light rear: A2 -> see text, for example if Lh is to be written to flash must in CV 155 value of 1	0	0 – 139 0 – 139
CV: 114, 115, 120, 120, 120, 120, 120, 120, 120, 120	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33 ff. To ward the associated outputs and key from a certain direction CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the ext - you have assigned to the output of a particular key (CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the ext - you have assigned to the output of a particular key (CV33 ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lift, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 → see text, for example where Lv is to be written to flash must in CV 155 value of 1 Effects on output: A3 → see text, for example blink when A3 is to be written to flash must in CV 157 value of 1 Effects on output: A4 → see text, for example if A4 is to be written to flash must in CV 157 value of 1	0 0	0 - 139 0 - 139 0 - 139
CV: 114, 115, 120, 120, 120, 120, 120, 120, 120, 120	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33f" or a ward the associated outputs and key from a certain direction CV33ff function, which is the other main task of this group CV. 161 set to shine also in which direction the ext - you have assigned to the output of a particular key (CV33ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lift, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 see text, for example where Lv is to be written to flash must in CV 155 value of 1 Effects on output: A3 see text, for example blink when A3 is to be written to flash must in CV 155 value of 1 Effects on output: A5 see text, for example blink when A5 is to be written must in CV 158 value of 1	0 0 0	0 - 139 0 - 139 0 - 139 0 - 139
CV: 114, 115, 120, 120, 120, 120, 120, 120, 120, 120	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33 ff. To award the associated outputs and key from a certain direction CV33 ff function, which is the other main task of this group CV. 161 set to shine also in which direction the ext - you have assigned to the output of a particular key (CV33 ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lit, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 → see text, for example where Lv is to be written to flash must in CV 155 value of 1 Effects of output: A3 → see text, for example if Lh is to be written to flash must in CV 157 value of 1 Effects on output: A3 → see text, for example blink when A3 is to be written must in CV 159 value of 1 Effects on output: A5 → see text, for example blink when A3 is to be written to flash when it must in CV 159 value of 1 Effects on output: A5 → see text, for example blink when A5 is to be written to flash when it must in CV 159 value of 1	0 0 0 0 0	0 - 139 0 - 139 0 - 139 0 - 139
CV: 114, 115, 120, 120, 120, 120, 120, 120, 120, 120	At certain outputs determine specific effects, which is a main task of this group CV. The exact nature of these effects can be determined with the CV 114, 115 and 120. This can be done universally in both directions or direction-dependent by adding the values 64 and 128 to the values for the effects. This feature is of particular interest to American models. The assignment of outputs to the function keys on the so-called "function mapping" in CVs 33f" or a ward the associated outputs and key from a certain direction CV33ff function, which is the other main task of this group CV. 161 set to shine also in which direction the ext - you have assigned to the output of a particular key (CV33ff) can be found the above CVs 154th These effects are having the values 0 - omitted 11th Instead, only the values 64 and 128 in CVs 154 - worked 161st example: The programmed button on 14 A7 output should light up only in the forward direction. It is not a value 0 - 11 filed. For forward motion but the value 64 is stored in CV 160. Well lift, the output turns on when the key A7 14 and only lights in forward motion. This universal adjustment, which can hardly needs of customization open, we call that "CT function mapping" Effects of light front: A1 see text, for example where Lv is to be written to flash must in CV 155 value of 1 Effects on output: A3 see text, for example blink when A3 is to be written to flash must in CV 155 value of 1 Effects on output: A5 see text, for example blink when A5 is to be written must in CV 158 value of 1	0 0 0	0 - 139 0 - 139 0 - 139 0 - 139

Color Code:

=	Addresses, Speeds, Characteristics
=	"function mapping", Configuration of Outputs
=	Motor Control
=	ZIMO – Features
=	Protection and Fault Analysis
=	Function Effects

Subject to change without notice.